A Artificial NeuroGlial Networks
نویسندگان
چکیده
More than 50 years ago connectionist systems (CSs) were created with the purpose to process information in the computers like the human brain (McCulloch & Pitts, 1943). Since that time these systems have advanced considerably and nowadays they allow us to resolve complex problems in many disciplines (classification, clustering, regression, etc.). But this advance is not enough. There are still a lot of limitations when these systems are used (Dorado, 1999). Mostly the improvements were obtained following two different ways. Many researchers have preferred the construction of artificial neural networks (ANNs) based in mathematic models with diverse equations which lead its functioning (Cortes & Vapnik, 1995; Haykin, 1999). Otherwise other researchers have pretended the most possibly to make alike these systems to human brain (Rabuñal, 1999; Porto, 2004). The systems included in this article have emerged following the second way of investigation. CSs which pretend to imitate the neuroglial nets of the brain are introduced. These systems are named Artificial NeuroGlial Networks (ANGNs) (Porto, 2004). These CSs are not only made of neuron, but also from elements which imitate glial neurons named astrocytes (Araque, 1999). These systems, which have hybrid training, have demonstrated efficacy when resolving classification problems with totally connected feed-forward multilayer networks, without backpropagation and lateral connections. BACKGROUND
منابع مشابه
Application New Approach with Two Networks Slow and Fast on the Asynchronous Machine
In this paper, we propose a new modular approach called neuroglial consisting of two neural networks slow and fast which emulates a biological reality recently discovered. The implementation is based on complex multi-time scale systems; validation is performed on the model of the asynchronous machine. We applied the geometric approach based on the Gerschgorin circles for the decoupling of fast ...
متن کاملHYBRID ARTIFICIAL NEURAL NETWORKS BASED ON ACO-RPROP FOR GENERATING MULTIPLE SPECTRUM-COMPATIBLE ARTIFICIAL EARTHQUAKE RECORDS FOR SPECIFIED SITE GEOLOGY
The main objective of this paper is to use ant optimized neural networks to generate artificial earthquake records. In this regard, training accelerograms selected according to the site geology of recorder station and Wavelet Packet Transform (WPT) used to decompose these records. Then Artificial Neural Networks (ANN) optimized with Ant Colony Optimization and resilient Backpropagation algorith...
متن کاملAstroglial Wiring is Adding Complexity to Neuroglial Networking
Astrocytes are organized as networks of communicating cells due to their high expression level of connexins, the molecular constituents of gap junction channels. Based on their permeability properties for ions and small signaling molecules such astroglial wiring interferes with neuronal activity and survival. In this paper, I identify and discuss which future technical and conceptual progress o...
متن کاملGeoid Determination Based on Log Sigmoid Function of Artificial Neural Networks: (A case Study: Iran)
A Back Propagation Artificial Neural Network (BPANN) is a well-known learning algorithmpredicated on a gradient descent method that minimizes the square error involving the networkoutput and the goal of output values. In this study, 261 GPS/Leveling and 8869 gravity intensityvalues of Iran were selected, then the geoid with three methods “ellipsoidal stokes integral”,“BPANN”, and “collocation” ...
متن کاملConnexin-Dependent Neuroglial Networking as a New Therapeutic Target
Astrocytes and neurons dynamically interact during physiological processes, and it is now widely accepted that they are both organized in plastic and tightly regulated networks. Astrocytes are connected through connexin-based gap junction channels, with brain region specificities, and those networks modulate neuronal activities, such as those involved in sleep-wake cycle, cognitive, or sensory ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2016